
computing
Julia

Roadmap
Stefan Karpinski

u alj i

Center For Data Science

Julia 1.0

Obviously, it’s not out yet – we just released 0.6

‣ ¯_(ツ)_/¯ always knew the timeline was aggressive

‣ much more happened in 0.6 than originally expected

Some questions:

‣ how much of 1.0 have we done?

‣ how does this compare to past releases?

Feature Status June 2017 Complete Defered Total

48% 25% 73%
8 #265 DONE!! ��� 100% 0% 100%

10 Type system redesign DONE!! ��� 100% 0% 100%
5 Vectorized operations: fuse dot ops DONE!! ��� 100% 0% 100%

20 Converting docs from RST to Markdown DONE!! ��� 100% 0% 100%
30 Finish String-apalooza DONE!! ��� 100% 0% 100%
11 Reimplement string with buffer done (obviated by Jeff) 100% 0% 100%
29 Unit Testing Infrastructure much improved, need line numbers on failed tests, can improve post 1.090% 10% 100%
34 Standalone binaries for companies to ship close but ~5 issues left 85% 15% 100%
22 Multi-threading: run-time safety done but always needs work 80% 20% 100%
19 Debugger needs a lot of work 70% 30% 100%
25 Stack optimization partially done 50% 50% 100%
15 GPU codegen much better, not 1.0 blocker 50% 50% 100%
18 Compile time Latency problems getting worse; work on it post 1.0 20% 80% 100%
26 Doc and tutorial writing not done 15% 85% 100%
36 Buffer type not crucial 0% 100% 100%

1 Vectorized operations: eliminate boundschecks on maps post 1.0 0% 100% 100%
2 Vectorized operations: loop fusion post 1.0 (syntactic works, optimizations not done) 0% 100% 100%
4 Replace / improve @printf insanity post 1.0 (remove from Base?) 0% 100% 100%

32 Reimplement arrays with buffer not happening in 1.0 0% 100% 100%
27 Linear Algebra changes do A_mul_B stuff 75% 0% 75%

7 Pkg3 so close 75% 0% 75%
31 Finalize I/O API this is probably close to done 75% 0% 75%

6 Record types / named tuples coming soon 70% 0% 70%
14 Restructuring standard library in progress (Alex in charge) 60% 0% 60%
28 Multi-threading: scheduler depends on Kiran, August? 50% 0% 50%
24 Documentation for all public types and functions (eg. bitstypes) ask Alex to work on this? 50% 0% 50%
12 Nullable support / result type / discriminated union under way 50% 0% 50%
35 Parallel computing - API revamp much progress, more needed (Amit, Andreas) 50% 0% 50%

3 Multi-threading: I/O make it not segfault, give warning 0% 50% 50%
9 Replace llvmcall design done. TODO 25% 0% 25%

23 Finalize collections API pick an option from Milan's Julep, do it 25% 0% 25%
16 Package/module name conflicts not done (covered by above item) 10% 0% 10%
21 Issues in language modularity features (relative using, method merging)not done, needs to happen 0% 0% 0%
33 intersection / conditional modules not done, needs to happen 0% 0% 0%
13 BinDeps2 not done, needs to happen 0% 0% 0%

Julia release history

v0.1 – 2013 Feb 13

v0.2 – 2013 Nov 16

v0.3 – 2014 Aug 20

v0.4 – 2015 Oct 7

v0.5 – 2016 Sep 19

v0.6 – 2017 Jun 19

276 days ≈ 9.2 mo

277 days ≈ 9.2 mo

413 days ≈ 13.8 mo

348 days ≈ 11.6 mo

273 days ≈ 9.1 mo

Julia 1.0

Milestone on GitHub is now a fairly accurate reflection of work to do

‣ nothing huge planned for this release!

‣ a lot of cleanup and planning ahead for 1.x

Need to move everything that can be non-breaking to 1.1+

‣ optimizations, compiler improvements, features

‣ e.g. don’t upgrade LLVM from 3.9.1 to 5.0 until later

Prioritize the most disruptive changes early in the release

Julia 0.7 ?!?!1?

You may have heard and seen “Julia 0.7” being talked about

‣ VERSION file contains “0.7.0-DEV”

Don’t worry, we’re not doing an additional release cycle!

‣ 0.7 = 1.0 with deprecations

To upgrade from 0.6:

‣ port your code to 0.7 and fix deprecation warnings as usual

‣ switch to 1.0 and fix anything else that breaks (ideally nothing)

Beyond 1.0

I’ve previously said that 2.0 might be only 1-2 years after 1.0

‣ we’ve been rethinking this – might be annoying

‣ people want a long-term stable platform

Beyond 1.0

There are a ton of things we can do that aren’t breaking

‣ optimizations, optimizations, optimizations

‣ upgrading infrastructure: LLVM 5.0, libuv, …

‣ adding features like traits, protocols, multiple inheritance, …

‣ work on key packages: DataStructures, DataFrames/Tables, …

‣ tooling: debugging, profiling, static analysis, …

